Package: autoGO 1.0.1

Fabio Ticconi

autoGO: Auto-GO: Reproducible, Robust and High Quality Ontology Enrichment Visualizations

Auto-GO is a framework that enables automated, high quality Gene Ontology enrichment analysis visualizations. It also features a handy wrapper for Differential Expression analysis around the 'DESeq2' package described in Love et al. (2014) <doi:10.1186/s13059-014-0550-8>. The whole framework is structured in different, independent functions, in order to let the user decide which steps of the analysis to perform and which plot to produce.

Authors:Isabella Grassucci [aut], Eleonora Sperandio [aut], Fabio Ticconi [cre], Alice Massacci [aut], Lorenzo D'Ambrosio [aut], Matteo Pallocca [aut]

autoGO_1.0.1.tar.gz
autoGO_1.0.1.zip(r-4.5)autoGO_1.0.1.zip(r-4.4)autoGO_1.0.1.zip(r-4.3)
autoGO_1.0.1.tgz(r-4.5-any)autoGO_1.0.1.tgz(r-4.4-any)autoGO_1.0.1.tgz(r-4.3-any)
autoGO_1.0.1.tar.gz(r-4.5-noble)autoGO_1.0.1.tar.gz(r-4.4-noble)
autoGO_1.0.1.tgz(r-4.4-emscripten)autoGO_1.0.1.tgz(r-4.3-emscripten)
autoGO.pdf |autoGO.html
autoGO/json (API)

# Install 'autoGO' in R:
install.packages('autoGO', repos = c('https://mpallocc.r-universe.dev', 'https://cloud.r-project.org'))

Bug tracker:https://github.com/mpallocc/auto-go/issues

Datasets:

On CRAN:

Conda:

3.90 score 2 stars 474 downloads 11 exports 146 dependencies

Last updated 1 months agofrom:bff8938730. Checks:9 OK. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKMar 30 2025
R-4.5-winOKMar 30 2025
R-4.5-macOKMar 30 2025
R-4.5-linuxOKMar 30 2025
R-4.4-winOKMar 30 2025
R-4.4-macOKMar 30 2025
R-4.4-linuxOKMar 30 2025
R-4.3-winOKMar 30 2025
R-4.3-macOKMar 30 2025

Exports:autoGObarplotGOchoose_databasedeseq_analysisfiltering_DEheatmapGOlolliGOread_enrich_tablesread_gene_listsssgsea_wrappervolcanoplot

Dependencies:abindannotateAnnotationDbiapeaskpassassertthatassortheadbabelgenebeachmatBHBiobaseBiocFileCacheBiocGenericsBiocParallelBiocSingularBiostringsbitbit64blobcachemcirclizeclicliprclueclustercodetoolscolorspaceComplexHeatmapcpp11crayoncurldata.tableDBIdbplyrDelayedArrayDelayedMatrixStatsDESeq2dichromatdigestdoParalleldplyrenrichRfansifarverfastmapfilelockforeachformatRfutile.loggerfutile.optionsgenericsGenomeInfoDbGenomeInfoDbDataGenomicRangesGetoptLongggplot2ggrepelGlobalOptionsgluegraphGSEABaseGSVAgtableh5mreadHDF5ArrayhmshttrimguRIRangesirlbaisobanditeratorsjpegjsonliteKEGGRESTlabelinglambda.rlatticelifecyclelocfitmagickmagrittrMASSMatrixMatrixGenericsmatrixStatsmemoisemgcvmimemsigdbrmunsellnlmeopensslopenxlsxpillarpkgconfigplogrplyrpngprettyunitsprogresspurrrR6RColorBrewerRcppRcppArmadilloreadrreshape2rhdf5rhdf5filtersRhdf5librjsonrlangRSQLitersvdS4ArraysS4VectorsScaledMatrixscalesshapeSingleCellExperimentslamsnowSparseArraysparseMatrixStatsSpatialExperimentstringistringrSummarizedExperimentsystextshapetibbletidyrtidyselecttzdbUCSC.utilsutf8vctrsviridisLitevroomwithrWriteXLSXMLxtableXVectorzip

AutoGO: Reproducible, Robust and High Quality Ontology Enrichment Visualizations

Rendered fromautoGO-tutorial.Rmdusingknitr::rmarkdownon Mar 30 2025.

Last update: 2025-02-07
Started: 2022-11-18